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Atomic Varieties of Sets with Relative Inverses 
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The generalization of the construction of the lattice of varieties for partial algebras 
is used for sets with relative inverses. There are many quantum structures 
representable by sets with relative inverses (orthomodular lattices, orthoalgebras, 
D-posets, test spaces, .. .). Varieties covering the trivial variety are investigated 
for the case of closed (strongest type) subalgebras and closed homomorphisms. 
Some similar results for weaker types are given. The context with set 
representation problems is considered for the set-theoretic difference operations. 

1. D E F I N I T I O N S  A N D  BASIC RESULTS 

The notion o f  the set with relat ive inverses  was in t roduced by Ka lmbach  
and Rie~anov{t (1994). The fo l lowing defini t ion is the list o f  ax ioms for the 
basic  notion o f  this paper. 

Def in i t ion  (We wil l  use the abbrevia t ion  "RI-sets") .  An  RI-se t  is a par t ia l  
a lgebra  of  s imi lar i ty  type 

(2, 0) 

(x, •, o) 

with 

X . . . . . .  nonempty  carrier  set 
[ ]  . . . . . .  par t ia l  binary operat ion relat ive inverse  
O . . . . . .  special  e lement  (general iza t ion of  the empty  set) 

with the fo l lowing  rules (axioms):  

(I) a []  O = a. 

(II) a [ ] a  = O. 

~Department of Mathematics, Faculty of Humanities and Sciences, Matej Bel University, 
Tajovsk6ho 40, 975 49 B. Bystrica, Slovakia. E-mail: konopka@fhpv.umb.sk. 

1519 
0020-7748/95/0800-15 [9$07.50/0 �9 1995 Plenum Publishing Corporation 



1520 Kon6pka 

(III) If b []  a is evaluable, then b []  (b []  a) is evaluable. 
(IV) If b []  a and a []  c are evaluable, then b []  c is evaluable. 
(V) ( a [ ] b ) [ ] c  = ( a [ ] c ) [ ] b .  

The last one is the existence equation (if all terms of one side are 
evaluable, then both sides are evaluable and the equation holds). 

The calculus for creating varieties for partial algebras is developed in 
Burmeister (1986). By using this tool we obtain some results for a unified 
point of view for frequent quantum structures. In Burmeister (1986) three 
degrees of bomomorphisms and subalgebras are distinguished. We begin with 
the notions of the closed homomorphism and the closed subalgebra. 

Definition of the weak homomorphism: Let A, B be RI-sets and do: A 
---) B be a mapping into B. Then qb is a weak homomorphism if do(b []A a) 
= +(b) []B (a) and + preserves O. 

Definition of the closed homomorphism: A closed homomorphism is a 
homomorphism with: if Ida(b) Be  do(a)] is evaluable, then for every u, v 
A such that d0(b) = do(u) and do(a) = qb(v), [u []A V] must be evaluable. 

Definition of the closed subalgebra: B is a closed subalgebra of A if 
the canonical embedding i: B ~ A . . . . . .  i(x) = x is an injective closed 
homomorphism. 

It is easy to see that there are three possibilities of two-element carrier 
sets: (RI: 0 []  1 = 0), (R2:0 []  1 = 1), (Rs: 0 []  1 is not evaluable). The 
property "there is a nonevaluable couple with first member 0" is preserved 
under the direct product construction and homomorphism image. This prop- 
erty is preserved under the subalgebra operator in the following sense: every 
algebra with this property has a two-element subalgebra with this property. 
This implies that the variety generated by R 3 is atomic (it covers the trivial 
variety). R2 is a total algebra and satisfies the equation 0 []  x = x. This 
implies that all members of the variety generated by R2 satisfy this equation. 
The variety generated by R2 is the variety with known equational characteriza- 
tion by 0 []  x = x. This fact is the corollary of the basic theory for varieties 
of Abelian groups. This variety is evidently atomic. The atomicity of the 
variety generated by RI is proved by fact that every RI-set satisfying 0 []  x 
= 0 has a two-element subalgebra of this type. 

If the set of all nonevaluable couples of an RI-set is nonempty, then 
this RI-set is contained only in varieties containing Rs. The other atoms in 
the lattice of varieties of RI-sets are generated by total algebras and all of 
its members are total algebras. Kalmbach and Rie6anova (n.d.) investigate 
the notion of Abelian RI-sets characterized by a generalized equation formu- 
lated by using the implication x []  a = y []  a implies that x = y. The 
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Abelian RI-set is the generalization of the Abelian group and the equational 
characterization of atoms in the lattice of varieties of Abelian groups can be 
translated into the language of RI-sets and the system of the atomic varieties 
of Abelian groups can be embedded into the system of atoms of varieties of 
RI-sets. The variety generated by R 2 is of this type. 

The problem of the equational characterization of the variety generated 
by RI is a nice example for the calculus of varieties of RI-sets. The variety 
generated by R1 is a subvariety of the one characterized by the equation 
0 [ ]  x = 0. It is the proper subvariety. The following example is on the 
three-element carrier set {0, 1, 2} with the list of results of operations (the 
couples with results determined by axioms and characterizing equation are 
omitted): 1 [ ]  2 = 0, 2 [ ]  1 = 1 is the element proving the difference 
between the equational characterization and the description by the generating 
set. There are two equations satisfied in the variety generated by RI such 
that the problem of equational characterization is nearly solved: 

x B ( x [ ] y )  = y B ( y � 8 9  x B ( y [ ] x )  =x 

The variety of RI-sets determined by these two equations is the variety 
whose members can be characterized as "the RI-sets with order relation (x 
<- y iff x [ ]  y = 0) and every interval of type [0, z] is a Boolean algebra." 
Stone's representation theorem for Boolean algebras enables the relative 
modification of set representations on subintervals. Two methods for general- 
ization on RI-sets are sufficiently natural: One is a generalization of the 
notion of maximal ideal and is similar to Stone's theorem. The second is to 
obtain the representation on every interval and make compatible all these 
representations. The first way can be used without technical difficulties for 
RI-sets with the property "for every element x there is an atom c such that 
c --< x holds." There are technical complications in proving an isomorphism 
for the canonical mapping from an RI-set to the set of all maximal ideals 
for RI-sets such that maximal ideals cannot be described by atoms. The second 
method is without restrictions, but the problem is to design factorizations for 
special types of elements. More precisely, a poset from a variety generated 
by RI is a semilattice with defined meet and with a weak form of the definition 
of the join: "if  there is an upper bound for a two-element set {x, y}, then 
there is a join of these elements." If an element is a meet of the couple of 
elements without the join and it is the coatom, then this element may determine 
the maximal ideal which is the member of the one-element representing set 
for two or more atoms in the RI-set. 

The problem of equational characterization of the variety generated by 
R~ is open and the following formulation is precise: 
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Let V be a variety of RI-sets characterized by the equations 

x B (x ~q y) = y [-~ (y  []  x) 

x [] ( y [~-] x) = x 

We define the following notions: the order relation on every element of 
V by x - y i f f x  [ ]  y = 0; the meet in this poset for every couple {x, y} by 
x ^ y = x [ ]  (x [ ]  y); the join in this poset for the couple {x, y} with common 
upper bound u by x v y = u [ ]  [(u [ ]  x) ^ (u [ ]  y)]. (This definition is 
correct-- i t  does not depend on the choice of upper bound.) It is known that 
(1) every subinterval [0, s] is an ortholattice with the orthocomplementation 
x'  = s [ ]  x, (2) this ortholattice is orthomodular, (3) every couple of elements 
of this interval is compatible ([0, s] is a Boolean algebra). 

The problem is to prove that every element of V is set-representable 
such that the set representation is considered with the operation 

A -  B = {x e A ; x  ~ B} 

(B not need be a subset of A) and the empty set as the zero element. 
The set representation with the structure of the variety generated by RI 

is based on the fact that the direct product of arbitrary many copies of RI is 
an RI-set with a system of subsets of some set as a carrier set, the operator 
of making the subalgebra preserves this property, and the homomorphic image 
is equivalent to the isomorphic copy. All elements of V are set representable. 
The opposite case that every set-representable algebra is the element of V 
is obvious. 

If some RI-set U generates the variety such that for every variety from 
the list of atomic varieties considered above this variety is not contained in 
the variety by generated U, then U must to satisfy the following conditions: 
(a) U is a total algebra, (b) 0 [ ]  x is not an element of {0, x}, (c) there is 
no subalgebra of U such that it is an Abelian group in sense described in 
(Kalmbach and Rie6anovL n.d.) (it is a natural transformation of the operation 
[ ]  to the group operation: x o y = z iff z [ ]  x = y). 

We will consider the structure of RI-sets with this property by introducing 
a special mapping ~b: U ---r U defined by the equation +(x) = 0 [ ]  x. For 
every RI-set the following equation holds: 

0 [ ]  [0 [ ]  (0 [ ]  a)] = 0 [ ] a  

To prove this identity we use admissible transformations starting from the 
evident fact (0 [ ]  a) [ ]  (0 [ ]  a) = 0. The precise procedure of computation 
will be omitted. If we use this equation for the analysis of orbits of the 
mapping ~b, we obtain the result that by starting from the arbitrary element 
and making one step we arrive at the element of a two-element orbit. If the 
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mapping qb is injective, then the fact that we consider total algebras implies 
the sufficiency of the Abelian criterion (c [ ]  a = d [ ]  a implies c = d); see 
Kalmbach and Rie6anov~i (1994) for the result that the considered RI-set is 
a Boolean algebra. The injectivity of ~b implies that this criterion holds. 
Atomic varieties for Boolean algebras are considered above. In the case the 
mapping ~b is not injective, there are many configurations, and results of the 
analysis of orbits of the mapping + and the classification of varieties are 
unknown to the author. 

2. W E A K  TYPES OF S U B A L G E B R A  A N D  H O M O M O R P H I S M  

In the case of the weak homomorphism and the subalgebra induced by 
the identical embedding to the weak homomorphism there are only two 
varieties: the trivial one and the variety of all nontrivial RI-sets. This case 
is not interesting. 

In the case of the weak homomorphism and a subalgebra of arbitrary 
degree in the sense of the classification in Burmeister (1986) the RI-set Rs 
generates the variety containing all nontrivial RI-sets. This case is not 
interesting. 

Let us introduce the notion of full homomorphism (Burmeister, 1986): 
A full homomorphism is a homomorphism with: [+(b) []B +(a)] is 

evaluabte with result in +(A) only in the case that ~b(b) = +(u) and ~b(a) = 
qb(v) for some evaluable [u [~a 17]. 

If we consider the case of full homomorphism and closed subalgebra 
then atomic varieties of Abelian groups (in the sense introduced above) are 
atomic but not different because they are equivalent to the variety generated 
by R3. 

The case of full homomorphism is very interesting, but the classification 
is not finished yet. 

3. SET REPRESENTATION ASPECTS 

The set representation is based on the fact that to be an element of 
some set is a statement with two Boolean values. This implies that set 
representations by characteristic functions are representations as subalgebras 
of the direct product of two-element RI-sets. There are three possibilities for 
two-element RI-sets induced in three ways for the definition of the partial 
binary operation on set-representable RI-sets. These are the difference on the 
arbitrary couple of sets (derived from Ri), the symmetric difference (derived 
from R2), and the difference between some set and its proper subset (derived 
from R3). The R1 case was investigated in the first part of this article, the R2 
case is the domain of classical measure theory, and the R3 case is the basis 
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for the generalized orthomodular poset representation theory. Generalization 
of the orthomodular poset is in the sense that every interval of  a generalized 
orthomodular poset is the orthomodular poset but the common upper bound 
is not necessary. The criterion by the order-determining system of states 
(Gudder, 1979) is an example of  the application of variety calculus in quantum 
logic theory. 
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